三维手部姿态估计与重建在计算机视觉与人机交互领域具有重要意义。精准且高效的姿态估计能够为虚拟现实、增强现实、智能驾驶、机器人交互等应用提供自然、直观的交互方式。例如,在虚拟现实场景中,通过实时准确地捕捉手部姿态,用户可以自然地与虚拟环境进行交互,如抓取、操作虚拟物体,提升沉浸感。在机器人领域,准确的手部姿态估计可助力机器人更好地理解人类手势指令,实现高效的人机协作。此外,三维手部重建能够为医学、动画制作等领域提供高质量的三维手部模型,辅助医学诊断、动画角色动作生成等。我们研究主要致力于提高基于RGB模态和Depth模态的三维手部姿态估计算法的精度、速度和鲁棒性。
基于RGB图的三维手部姿态估计
Click here for details
Demo
-
A3-Net: Calibration-Free Multi-View 3D Hand Reconstruction for Enhanced Musical Instrument Learning
Geng Chen, Xufeng Jian*, Yuchen Chen, Pengfei Ren†, Jingyu Wang†, Haifeng Sun, Qi Qi, Jing Wang, Jianxin Liao
-
Pose-Guided Temporal Enhancement for Robust Low-Resolution Hand Reconstruction
Kaixin Fan, Pengfei Ren*, Jingyu Wang† , Haifeng Sun, Qi Qi, Zirui Zhuang, Jianxin Liao
-
Region-Aware Dynamic Filtering Network for 3D Hand Reconstruction
Yuchen Chen, Pengfei Ren*, Jingyu Wang, Haifeng Sun, Qi Qi, Jing Wang, Jianxin Liao
-
SMR: Spatial-Guided Model-Based Regression for 3D Hand Pose and Mesh Reconstruction
Haifeng Sun, Xiaozheng Zheng, Pengfei Ren, Jingyu Wang, Qi Qi, Jianxin Liao
-
SAR: Spatial-Aware Regression for 3D Hand Pose and Mesh Reconstruction from a Monocular RGB Image
Xiaozheng Zheng, Pengfei Ren, Haifeng Sun, Jingyu Wang, Qi Qi, Jianxin Liao
基于深度图的三维手部姿态估计
Click here for details
-
Keypoint Fusion for RGB-D Based 3D Hand Pose Estimation
Xingyu Liu, Pengfei Ren*, Yuanyuan Gao, Jingyu Wang, Haifeng Sun, Qi Qi, Jianxin Liao
-
Two Heads are Better than One: Image-Point Cloud Network for Depth-Based 3D Hand Pose Estimation
Pengfei Ren, Chenyu Chen, Jiachang Hao, Haifeng Sun, Qi Qi, Jingyu Wang, Jianxin Liao
-
SA-Fusion: Multimodal Fusion Approach for Web-based Human-Computer Interaction in the Wild
Xingyu Liu, Pengfei Ren, Yuchen Chen, Cong Liu, Jing Wang, Haifeng Sun, Qi Qi, Jingyu Wang
-
Pose-Guided Hierarchical Graph Reasoning for 3-D Hand Pose Estimation From a Single Depth Image
Pengfei Ren, Haifeng Sun, Jiachang Hao, Qi Qi, Jingyu Wang, Jianxin Liao
-
Spatial-Aware Stacked Regression Network for Real-Time 3D Hand Pose Estimation
Pengfei Ren, Haifeng Sun, Weiting Huang, Jiachang Hao, Daixuan Cheng, Qi Qi, Jingyu Wang, Jianxin Liao
-
AWR: Adaptive Weighting Regression for 3D Hand Pose Estimation
Weiting Huang, Pengfei Ren*, Jingyu Wang, Qi Qi, Haifeng Sun
-
SRN: Stacked Regression Network for Real-time 3D Hand Pose Estimation
Pengfei Ren, Haifeng Sun, Qi Qi, Jingyu Wang, Weiting Huang
自监督三维手部重建
强监督三维手部姿态估计方法在复杂真实环境下泛化能力有限,常面临时序抖动和精度下降问题。多样性高质量标注手部数据的缺失是导致现有模型泛化能力差的核心原因。自监督三维手部重建正旨在通过利用海量无标注数据自身蕴含的结构信息,构造伪标签和预测任务,使模型在无需人工标注的条件下自主学习鲁棒手部特征,从而有效缓解过拟合问题。我们的工作借助多视角自监督策略,构建跨视角共享的一致性潜在表征空间,实现知识迁移与互补优势的充分挖掘,不仅提升了对手部自遮挡、复杂姿态的识别能力,增强了系统在真实场景下的鲁棒性和精确度。我们的研究在无需任何标注数据的情况下,首次实现了10mm三维手部重建误差。
Click here for details
-
HaMuCo: Hand Pose Estimation via Multiview Collaborative Self-Supervised Learning
Xiaozheng Zheng, Chao Wen, Zhou Xue, Pengfei Ren, Jingyu Wang
-
Mining Multi-View Information: A Strong Self-Supervised Framework for Depth-Based 3D Hand Pose and Mesh Estimation
Pengfei Ren, Haifeng Sun, Jiachang Hao, Jingyu Wang, Qi Qi, Jianxin Liao
-
A Dual-Branch Self-Boosting Framework for Self-Supervised 3D Hand Pose Estimation
Pengfei Ren, Haifeng Sun, Jiachang Hao, Qi Qi, Jingyu Wang, Jianxin Liao
双手重建
Click here for details
-
Decoupled Iterative Refinement Framework forInteracting Hands Reconstruction from a Single RGB Image
Pengfei Ren, Chao Wen, Xiaozheng Zheng, Zhou Xue, Haifeng Sun, Qi Qi, Jingyu Wang, Jianxin Liao
手物协同重建
精准重建手部与物体交互过程,赋能虚拟现实、智能制造和机器人操作等。手物交互数据包含描述手部动态姿态和物体位姿的时空信息,比如交互序列数据。我们的研究方向主要集中在手物姿态估计、细粒度手物网格重建、照片级真实的手物渲染,旨在提升交互细节的还原度和物理合理性。研究平台已在多个场景的人机交互平台中落地应用。例如,在裸手交互系统中,无需额外传感器即可实现对手部和物体的精确三维重建,提升了交互的自然度和灵活性;在VR平台中,手物交互重建技术助力高沉浸式体验;此外,研究成果在真实场景渲染中也得到了广泛应用,通过高精度的手物建模与渲染技术,实现了交互过程的照片级还原,为影视制作、数字孪生和工业仿真等领域提供了核心技术支持。
Click here for details
-
Coarse-to-Fine Implicit Representation Learning for 3D Hand-Object Reconstruction from a Single RGB-D Image
Xingyu Liu, Pengfei Ren*, Jingyu Wang, Haifeng Sun, Qi Qi, Zirui Zhuang, Jianxin Liao