类别无关姿态估计
传统姿态估计算法由于缺乏跨类别的泛化能力,通常需要为不同类别重新设计网络结构。此外,这些方法依赖高质量大规模的标注数据,导致在处理稀有物种或特殊姿态时表现不佳。类别无关的姿态估计任务旨在通过利用少量标注的参考图像,能够预测任意类别对象的语义关键点位置。这种方法显著减少了对新类别的数据收集、模型训练和参数调整的成本,并以高效适应新类别的能力,为姿态估计领域提供了新的解决方案。现有算法的核心机制是将参考图像中的关键点信息映射到特征空间,与目标图像的图像特征进行匹配,从而实现对未知类别姿态的准确估计。我们的研究致力于获取更具判别性和鲁棒性的特征表示,以及设计更高效精确的匹配机制,以提升类别无关姿态估计算法的性能。
Click here for details
-
Dynamic Support Information Mining for Category-Agnostic Pose Estimation
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications Paper Abstract Category-agnostic pose estimation (CAPE) aims to predict the pose of a query image based on few support images with pose annotations. Existing methods achieve the localization of arbitrary keypoints through similarity matching between support keypoint features and query image […]
多视角三维姿态估计
多视角学习在三维感知中具有重要价值,其通过融合多源视觉信息突破单视角的感知局限,为复杂场景下的三维重建和姿态估计等任务提供更鲁棒、高精度的解决方案。该技术可赋能虚拟现实交互、自动驾驶感知、机器人导航等多元化场景。例如,在舞蹈动作智能分析中,借助无标定的多视角学习,无需依赖复杂校准设备即可生成高精度三维姿态,显著降低教学成本并实现个性化反馈;在动态人机协作场景中,校准无关的多视角手部重建技术能够实时捕捉精细手势,助力机器人理解复杂操作意图,提升协作效率与安全性。我们研究聚焦于无标定下的多视角人体/手部姿态估计和三维重建,通过设计自适应语义对齐框架与噪声鲁棒的跨视角融合策略,突破传统方法对相机参数的强依赖,并显著提升模型精度和鲁棒性。
Click here for details
-
Unified 2D-3D Discrete Priors for Noise-Robust and Calibration-Free Multiview 3D Human Pose Estimation
Abstract Multi-view 3D human pose estimation (HPE) leverages complementary information across views to improve accuracy and robustness. Traditional methods rely on camera calibration to establish geometric correspondences, which is sensitive to calibration accuracy and lacks flexibility in dynamic settings. Calibration-free approaches address these limitations by learning adaptive view interactions, typically leveraging expressive and flexible continuous […]